

Welcome to DeepPavlov Agent documentation!

DeepPavlov Agent is a framework for development of scalable and production ready multi-skill virtual assistants, complex dialogue systems and chatbots.

Overview

	Architecture Overview

	Installation

	Running the Agent
	HTTP api server

	Analyzing the data

Services HTTP API

	Input Format

	Output Format

	Annotator

	Skill Selector

	Skill

	Response Selector

	Postprocessor

User State API

	User State API

User Commands

	/start

State Formatters

	Defining the formatters

Configuration files

	Agent Configuration

	Database Config Description

	Pipeline Config Description
	Services Config

	Connectors config

State manager

	Built-in StateManager

	Available methods

Connectors

	Built-in connectors

	Built-in python connectors
	ConfidenceResponseSelectorConnector

	PredefinedTextConnector

	PredefinedOutputConnector

	Writing your own connectors

Architecture Overview

Modern virtual assistants such as Amazon Alexa and Google assistants integrate and orchestrate different
conversational skills to address a wide spectrum of user’s tasks.
DeepPavlov Agent is a framework for development of scalable and production ready multi-skill virtual assistants,
complex dialogue systems and chatbots.

Key features:

	scalability and reliability in highload environment due to micro-service architecture

	ease of adding and orchestrating conversational skills

	shared memory of dialog state [https://deeppavlov-agent.readthedocs.io/en/latest/_static/api.html] and NLP annotations accessible to all skills

Core concepts of DeepPavlov Agent architecture:

	Utterance is a single message produced by a human or a bot;

	Service is a NLP model or any other external service that supports a REST API.

DeepPavlov Agent orchestrates following types of services:

	Annotator is a service for NLP preprocessing of an utterance. It can implement some basic text processing like spell correction, named entity recognition, etc.;

	Skill is a service producing a conversational response for a current dialogue state;

	Skill Selector is a service that selects a subset of available skills
for producing candidate responses;

	Response Selector is a service selecting out of available candidates a response to be sent to the user;

	Postprocessor is a service postprocessing a response utterance. It can make some basic things
like adding a user name, inserting emojis, etc.

	Postprocessed Response is a final postprocessed conversational agent utterance that is shown to the user.

	State stores current dialogs between users and a conversational agent as well as other
infromation serialized in a json format. State is used to share information
across the services and stores all required information about the current dialogs.
Dialogue state is documented here [https://deeppavlov-agent.readthedocs.io/en/latest/_static/api.html].

[image: Diagram of DeepPavlov Agent Architecture]

Installation

Deeppavlov agent requires python >= 3.7 and can be installed from pip.

pip install deeppavlov_agent

Running the Agent

Agent can be run inside a container or on a local machine. The default Agent port is 4242.
To launch the agent enter:

python -m deeppavlov_agent.run_http

Command parameters are set via deepavlov_agent/settings.yaml:

	-ch - output channel for agent. Could be either http_client or cmd_client

	-p - port for http_client, default value is 4242

	-pl - pipeline config path, you can use multiple pipeline configs at the time, next one will update previous

	-d - database config path

	-rl - include response logger

	-d - launch in debug mode (additional data in http output)

The agent can send information about exceptions to Sentry [https://docs.sentry.io/] using setted environment variable DP_AGENT_SENTRY_DSN.

HTTP api server

	Web server accepts POST requests with application/json content-type

Request should be in form:

{
 "user_id": "unique id of user",
 "payload": "phrase, which should be processed by agent"
}

Example of running request with curl:

curl --header "Content-Type: application/json" \
 --request POST \
 --data '{"user_id":"xyz","payload":"hello"}' \
 http://localhost:4242

Agent returns a json response:

{
 "user_id": "same user id as in request",
 "response": "phrase, which were generated by skills in order to respond"
}

In case of wrong format, HTTP errors will be returned.

	Arbitrary input format of the Agent Server

If you want to send anything to the Agent, except
user_id and payload, just pass it as an additional key-value item, for example:

curl --header "Content-Type: application/json" \
 --request POST \
 --data '{"user_id":"xyz","payload":"hello", "my_custom_dialog_id": 111}' \
 http://localhost:4242

All additional items will be stored in the Agents state into the attributes field of a HumanUtterance.
Dialogue state is documented here [https://deeppavlov-agent.readthedocs.io/en/latest/_static/api.html]

	Retrieve dialogs from the database through GET requests

Dialogs’ history is returned in json format which can be easily prettifyed with various browser extensions.

Logs can be accessed at (examples are shown for the case when the agent is running on http://localhost:4242):

	http://localhost:4242/api/dialogs/<dialog_id> - provides exact dialog

	http://localhost:4242/api/user/<user_id> - provides all dialogs by user_id

	Load analytics

Number of processing tasks and average response time for both the agent and separate services are
provided in a real time on the page http://localhost:4242/debug/current_load .

Analyzing the data

History of the agent’s state for all dialogues is stored to a Mongo DB. The state [https://deeppavlov-agent.readthedocs.io/en/latest/_static/api.html] includes utterences from user with corresponding responses. It also includes all the additional data generated by agent’s services.
Following Mongo collections can be dumped separately:

	Human

	Bot

	User (Human & Bot)

	HumanUtterance

	BotUtterance

	Utterance (HumanUtterance & BotUtterance)

	Dialog

 These types of dialog services can be connected to the agent’s conversational pipeline:

	Annotator

	Skill Selector

	Skills

	Response Selector

	Postprocessor

Input Format

All services should accept an input in an agent state format. This format is described here [https://deeppavlov-agent.readthedocs.io/en/latest/_static/api.html].
If an input format of a service differs from the agent state format then a formatter function should be implemented.
This formatter function receives a request in agent state format and returns a request in format supported by the service.

Output Format

All services should provide an output in an agent state format. This format is described here [https://deeppavlov-agent.readthedocs.io/en/latest/_static/api.html].
To use the same formatter for input and output set the mode=='out' flag.

Annotator

Annotator service returns a free-form response.

For example, the NER annotator may return a dictionary with tokens and tags keys:

{"tokens": ["Paris"], "tags": ["I-LOC"]}

Sentiment annotator can return a list of labels:

["neutral", "speech"]

Also, Sentiment annotator can return just a string:

"neutral"

Skill Selector

Skill Selector service should return a list of names for skills selected to generate a candidate response for a dialog.

For example:

["chitchat", "hello_skill"]

Skill

Skill service should return a list of dicts where each dict corresponds to a single candidate response.
Each candidate response entry requires text and confidence keys.
The Skill can update Human or Bot profile.
To do this, it should pack these attributes into human_attributes and bot_attributes keys.

All attributes in human_attributes and bot_attributes will overwrite current Human and Bot
attribute values in agent state. And if there are no such attributes,
they will be stored under attributes key inside Human or Bot.

The minimum required response of a skill is a 2-key dictionary:

[{"text": "hello",
 "confidence": 0.33}]

But it’s possible to extend it with human_attributes and bot_attributes keys:

[{"text": "hello",
 "confidence": 0.33,
 "human_attributes":
 {"name": "Vasily"},
 "bot_attributes":
 {"persona": ["I like swimming.", "I have a nice swimming suit."]}}]

Everything sent to human_attributes and bot_attributes keys will update user field in the same
utterance for the human and in the next utterance for the bot. Please refer to agent state [https://deeppavlov-agent.readthedocs.io/en/latest/_static/api.html] documentation for more information about the User object updates.

Also it’s possible for a skill to send any additional key to the state:

[{"text": "hello",
 "confidence": 0.33,
 "any_key": "any_value"}]

Response Selector

Unlike Skill Selector, Response Selector service should select a single skill as a source of the
final version of response. The service returns a name of the selected skill, text (might be
overwritten from the original skill response) and confidence (also might be overwritten):

{"skill_name": "chitchat",
 "text": "Hello, Joe!",
 "confidence": 0.3}

Also it’s possible for a Response Selector to overwrite any human or bot attributes:

{"skill_name": "chitchat",
 "text": "Hello, Joe!",
 "confidence": 0.3,
 "human_attributes": {"name": "Ivan"}}

Postprocessor

Postprocessor service can rewrite an utterance selected by the Response Selector. For example, it can
take a user’s name from the state and add it to the final answer.

If a response was modified by Postprocessor then a new version goes the text field of the final
utterance and shown to the user, and the utterance selected by Response Selector goes to the orig_text field.

"Goodbye, Joe!"

User State API

Each utterance in a Dialog state is generated by some User either Human or Bot.
The user.user_type field stores reference to source of the utterance:

{"utterances": [{"user": {"user_type": "human"}}]}

A skill can update any fields in User (Human or Bot) objects. If a Skill updates a Human,
the Human fields will be changed in this utterance accordingly. If a Skill updates a Bot, the Bot fields will be
changed in the next (generated by the bot) utterance.

Each new dialog starts with a new Bot with all default fields. However, the Human object is updated permanently, and
when a Human starts a new dialog, the object is retrieved from a database with all updated fields.

The history of all changes made by skills to users can be looked up at the list of possible responses in the
hypotheses field of a human utterance:

{"utterances": [{"user": {"user_type": "human"}, "hypotheses": []}]}

/start

To start a new dialog send “/start” utterance to the bot.

 Formatters are the functions that allow converting the input and output API of services into Agent’s API.

Defining the formatters

There are two main formatter types: which extracts data from dict representation of dialogs and formats it to
service accessible form (dialog formatter), and which extracts data from service response and formats it prior
adding to state (response formatter, this is optional one)

Dialog formatters

This functions should accept a single parameter: dialog (in dict form), and return a list of tasks for service processing.
Each task should be in a format, which is correct for associated service.
From a dict form of a dialog you can extract data on:

	Human - dialog['human']

	Bot - dialog['bot']

	List of all utterances - dialog['utterances']

	List of only human utterances - dialog['human_utterances']

	List of only bot utterances - dialog['bot_utterances']

Each utterance (both bot and human) have some amount of same parameters:

	Text - utterance['text']

	Annotations - utterance['annotations']

	User (human or bot, depending on type of utterance) - utterance['user']

Human utterance have an additional parameters:

	List of hypotheses - utterance['hypotheses']

	Additional attributes - utterance['attributes']

Bot utterance also have additional attributes:

	Active skill name (skill, which provided actual response) - utterance['active_skill']

	Response confidence - utterance['confidence']

	Original response text (not modified by postprocessors) - utterance['orig_text']

Response formatters

This functions should accept one sample of skill response, and re-format it, making further processing available.
This formatters are optional.

Agent Configuration

Configuration of pipeline and database for the Agent can be defined
in json or yml file.

Database Config Description

Database configuration parameters are provided via db_conf file. Currently, agent supports Mongo DB.

All default values are taken from Mongo DB documentation [https://docs.mongodb.com/manual/].
Please refer to these docs if you need to change anything.

Example of a database config:

{
 "env": false,
 "host": "mongo",
 "port": 27017,
 "name": "dp_agent"
}

	
	env

	
	If set to false (or not mentioned), specified parameters’ values will be used for db initialisation. Otherwise, agent will try to get an environmental variable by name, associated with parameter.

	
	host

	
	A database host, or env variable, where database host name is stored.

	
	port

	
	A database port, or env variable, where database port is stored.

	
	name

	
	An name of the database, or env variable, where name of the database is stored.

Pipeline Config Description

Pipeline configuration parameters are specified in pipeline_conf file.
There are two different sections in pipeline_conf to configure Connectors and Services.

Services Config

Service is a single node of pipeline graph, or a single step in processing of user message.
In pipeline_conf all services are grouped under service key.

Example of a service config:

{"group_name": {
 "service_label": {
 "dialog_formatter": "dialog formatter",
 "response_formatter": "response formatter",
 "connector": "used connector",
 "previous_services": "list of previous services",
 "required_previous_services": "list of previous services",
 "state_manager_method": "associated state manager method",
 "tags": "list of tags"
 }
 }
}

	
	group name

	
	This is an optional key. If it is specified then services can be referenced by their group name in previous_services and required_previous_services.

	If group name is specified then the service name is <group name>.<service label>.

	
	service_label

	
	Label of the service. Used as a unique service name, if service is not grouped.

	Passed to a state manager method, associated with the service. So,``service_label`` is saved in state.

	
	dialog_formatter

	
	Generates list of tasks for services from a dialog state.

	Can be configured as <python module name>:<function name>.

	Formatter can generate several tasks from the same dialog, for example, if you want to annotate all hypotheses.

	Each generated task corresponds to a single valid request payload to be processed by service without further formatting.

	
	response_formatter

	
	Maps a service response to the format of dialog state.

	Can be configured as <python module name>:<function name>.

	Optional parameter. If not specified then unformatted service output is sent to state manager method.

	
	connector

	
	Specifies a connector to a service. Can be configured here, or in connectors section.

	Can be configured as <python module name>:<connector's class name>.

	
	previous_services

	
	List of services to be executed (or skipped, or respond with an error) before sending data to the service.

	Should contain either group names or service names.

	
	required_previous_services

	
	List of services to be completed correctly before the service, because it depends on their output.

	If at least one of the required_previous_services is skipped or finished with an error, the service is not executed.

	Should contain either group names or service names.

	
	state_manager_method

	
	Name of a StateManager class method to be executed after the service response.

	
	tags

	
	Tags, associated with the service to indicate a specific behaviour.

	selector - corresponds to skill selector service. This service returns a list of skills selected for response generation.

	timeout - corresponds to timeout service. This service is called when processing time exceeds specified limit.

	last_chance - corresponds to last chance service. This service is called if other services in pipeline have returned an error, and further processing is impossible.

Connectors config

Connector represents a function, where tasks are sent in order to process.
Can be implementation of some data transfer protocol or model implemented in python.
Since agent is based on asynchronous execution, and can be slowed down by blocking synchronous parts,
it is strongly advised to implement computational heavy services separate from agent,
and use some protocols (like http) for data transfer.

There are several possibilities, to configure connector:

	Built-in HTTP

{"connector name": {
 "protocol": "http",
 "url": "connector url",
 "batch_size": "batch size for the service"
 }
}

	
	connector name

	
	A name of the connector. Used in services part of the config, in order to associate service with the connector

	
	protocol

	
	http

	
	url

	
	Actual url, where an external service api is accessible. Should be in format http://<host>:<port>/<path>

	
	batch_size

	
	Represents a maximum task count, which will be sent to a service in a batch. If not specified is interpreted as 1

	If the value is 1, an HTTPConnector [https://github.com/deepmipt/dp-agent/blob/master/deeppavlov_agent/core/connectors.py#L10] class is used.

	If the value is more than one, agent will use AioQueueConnector [https://github.com/deepmipt/dp-agent/blob/master/deeppavlov_agent/core/connectors.py#L32]. That connector sends data to asyncio queue. Same time, worker QueueListenerBatchifyer [https://github.com/deepmipt/dp-agent/blob/master/deeppavlov_agent/core/connectors.py#L40], which collects data from queue, assembles batches and sends them to a service.

	Python class

{"connector name": {
 "protocol": "python",
 "class_name": "class name in 'python module name:class name' format",
 "other parameter 1": "",
 "other parameter 2": ""
 }
}

	
	connector name

	
	Same as in HTTP connector case

	
	protocol

	
	python

	
	class_name

	
	
	Path to the connector’s class in <python module name>:<class name> format

	
	Connector’s class should implement asynchronous send(self, payload: Dict, callback: Callable) method

	payload represents a single task, provided by a dialog formatter, associated with service, alongside with task_id: {'task_id': some_uuid, 'payload': dialog_formatter_task_data}

	callback is an asynchronous function process [https://github.com/deepmipt/dp-agent/blob/master/deeppavlov_agent/core/agent.py#L58]. You should call that with service response and task_id after processing

	
	other parameters

	
	Any json compatible parameters, which will be passed to the connector class initialisation as **kwargs

Built-in StateManager

Built-in StateManager is responsible for all database read and write operations, and it’s working with MongoDB database.
You can assign it’s methods to services in your pipeline in order to properly save their responses to dialogs state.
You can read more on the pipeline configuration in Services Config

Available methods

Each of the methods have a following input parameters, which are filled automatically by agent during message processing.

	dialog - dialog object, which will be updated

	payload - response of the service with output formatter applied

	label - label of the service

	kwargs - minor arguments which are also provided by agent

You can use several state manager methods in your pipeline:

	
	add_annotation

	
	Adds a record to annotations section of the last utterance in dialog

	label is used as a key

	payload is used as a value

	
	add_annotation_prev_bot_utt

	
	Adds a record to annotations section of the second utterance from the end of the dialog

	Only works if that utterance is bot utterance

	Suitable for annotating last bot utterance on the next dialog round

	label is used as a key

	payload is used as a value

	
	add_hypothesis

	
	Adds a record to hypotheses section of the last utterance in dialog

	Works only for human utterance, since bot utterance doesn’t have such section

	Accepts list of hypotheses dicts, provided by service

	Two new keys are added to each hypothesis: service_name and annotations

	label is used as a value for service_name key

	Empty dict is used as a value for annotations key

	
	add_hypothesis_annotation

	
	Adds an annotation to a single element of the hypotheses section of the last utterance in dialog under annotations key

	In order to identify a certain hypothesis, it’s index is used and stored in agent

	label is used as a key

	payload is used as a value

	
	add_text

	
	Adds a value to text field of the last utterance in dialog

	Suitable for modifying a response in a bot utterance (original text can be found in orig_text field)

	payload us used as a value

	
	add_bot_utterance

	
	This method is intended to be associated with response selector service

	Adds a new bot utterance to the dialog

	Modifies associated user and bot objects

	We consider, that payload will be a single hypothesis, which was chosen as a bot response. So it will be parsed to different fields of bot utterance

	text and orig_text fields of new bot utterance are filled with text value from payload

	active_skill field is filled with skill_name value from payload

	confidence field is filled with confidence value from payload

	annotations from payload are copyed to annotations field of bot utterance

	We expect, that skills will return text and confidence fields at least. skill_name and annotations are created within add_hypothesis method

	
	add_bot_utterance_last_chance

	
	This method is intended to be associated with a failure processing service, like timeout or last chance responder

	It is very similar in processing to add_bot_utterance, but it performs an additional check on the type of a last utterance in dialog

	If the last utterance is a human utterance the method acts as an add_bot_utterance one

	Otherwise, it will skip a stage with creating a new bot utterance and inserting it at the end of the dialog

There are two additional state manager methods, which are automatically assigned during agent’s initialisation.

	
	add_human_utterance

	
	This method is assigned to an input service, which is created automatically during agent’s initialisation process

	Adds a new human utterance to the dialog

	payload is used for text field of the new human utterance

	
	save_dialog

	
	This method is assigned to a responder service, which is created automatically during agent’s initialisation process

	It just saves a dialog to database

Built-in connectors

Generally, connector is a python class with a method send. It can be either a model, nn or rule based, or implementation of some transport protocols.
Although, we strongly recommend to implement nn models as an external services.

We have two different connectors for HTTP protocol as a built-in ones. Single sample and batchifying. Of course you can send a batch of samples to your model using single sample connector, but in this case you should form the batch with proper dialog formatter.
Batchifying connector will form batch from samples, available at the time, but can’t guarantee actual batch size, only it’s maximum size.

There are three more connectors, which can be used for different purposes. Each of them can be configurend as a python connector with it’s name
You can read more on the connectors configuration in Connectors config.

Built-in python connectors

ConfidenceResponseSelectorConnector

This connector provides a simple response selection functionality. It chooses a best hypothesis based on its confidence parameter. In order to use it, you should consider a few things:

	You don’t need to define a dialog formatter (if you use built-in state manager)

	You need to ensure, that all of your skills (or services with assighed add_hypothesis SM method) provides a confidence value somehow

	It returns a chosen hypothesis, so you don’t need to define output formatter as well

	No special configuration parameters are needed

So the basic configuration for it is very simple:

{"response_selector": {
 "connector": {
 "protocol": "python",
 "class_name": "ConfidenceResponseSelectorConnector"
 },
 "state_manager_method": "add_bot_utterance",
 "previous_services": ["place previous skill names here"]
}}

PredefinedTextConnector

This connector can be used in order to provide a simple way to answer in time, or in case of errors in your pipeline. It returns a basic parameters, which can be used to form a proper bot utterance.

	text parameter will be a body of a bot utterance

	Additionally, you can provide an annotations parameter, in case if you need to have a certain annotations for further dialog

	There is no need to configure a dialog and response formatters

This example configuration represents simple last chance service:

{"last_chance_service": {
 "connector": {
 "protocol": "python",
 "class_name": "PredefinedTextConnector",
 "response_text": "Sorry, something went wrong inside. Please tell me, what did you say."
 "annotations": {"ner": "place your annotations here"}
 },
 "state_manager_method": "add_bot_utterance_last_chance",
 "tags": ["last_chance"]
}}

More on last chance and timeout service configuration here:

PredefinedOutputConnector

This connector is quite similar to PredefinedTextConnector. It returns a predefined values, but instead of fixed text and annotations keys, it can be configured to return any arbitrary json compatible data structure.
The main purpose of this connector class is testing of pipeline routing, formatting or outputs. You can make a dummy service, which will imitate (in terms of structure) the response of desired model.
This connector have only one initialisation parameter:

	output - list or dict, which will be passed to agent’s callback as payload

This example configuration represents a dummy service, representing skill:

{"skill": {
 "connector": {
 "protocol": "python",
 "class_name": "PredefinedOutputConnector",
 "output": [{"text": "Hypotheses1", "confidence": 1}]
 },
 "dialog_formatter": "place your dialog formatter here",
 "response_formatter": "place your response formatter here",
 "state_manager_method": "add_hypothesis",
 "previous_services": ["list of the previous_services"]
}}

But you can imitate any skill type with this connector.

Writing your own connectors

In order to define your own connector, you should follow these requirements:

	It should be a python class

	You can pass initialisation parameters to it via Connectors config python class

	You need to implement an asynchronous method send(self, payload: Dict, callback: Callable)

	It should return a result to agent using callback function

	payload input parameter is a dict of following structure:

{
 "task_id": "unique identifyer of processing task",
 "payload": "single task output, of the associated dialog formatter"
}

So basically, your connector should look like this:

class MyConnector:
 def __init__(self, **kwargs):
 # Your code here

 async def send(self, payload: Dict, callback: Callable):
 try:
 # Write processing part here
 await callback(
 task_id=payload['task_id'],
 response=response # Supposing that result of the processing is stored in a variable named "response"
)
 except Exception as e:
 # That part allows agent to correctly process service internal errors
 # and call a "last chane" service without stopping the ongoing dialogs
 response = e
 await callback(
 task_id=payload['task_id'],
 response=response
)

Index

 _static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to DeepPavlov Agent documentation!

 		
 Architecture Overview

 		
 Installation

 		
 Running the Agent

 		
 HTTP api server

 		
 Analyzing the data

 		
 Input Format

 		
 Output Format

 		
 Annotator

 		
 Skill Selector

 		
 Skill

 		
 Response Selector

 		
 Postprocessor

 		
 User State API

 		
 /start

 		
 Defining the formatters

 		
 Agent Configuration

 		
 Database Config Description

 		
 Pipeline Config Description

 		
 Services Config

 		
 Connectors config

 		
 Built-in StateManager

 		
 Available methods

 		
 Built-in connectors

 		
 Built-in python connectors

 		
 ConfidenceResponseSelectorConnector

 		
 PredefinedTextConnector

 		
 PredefinedOutputConnector

 		
 Writing your own connectors

_static/Agent_Pipeline.png
4@7

Annotator 1 Annotator 2 Annotator 3
Annotated
> jf—————
Utterance
Skill Selector
Skill 1 Skill 2 Skill 3
Response 1 Response 2 Response 3
Response
| ————
Selector
Response 3
Postprocessor|

l

_static/Agent_Pipeline_v2.png
Utterance

Annotators

Annotated

Utterance

Skill Selector

Skill 1 Skill 2 Skill 3

Response 1 Response 2 Response 3

Response
Selector

Response 3

Postprocessor|

!

Postprocessed
Response

_images/Agent_Pipeline_v2.png
Utterance

Annotators

Annotated

Utterance

Skill Selector

Skill 1 Skill 2 Skill 3

Response 1 Response 2 Response 3

Response
Selector

Response 3

Postprocessor|

!

Postprocessed
Response

